

INTRODUCTION TO IPS CERAMICS

Manufacturers of Furnace Equipment, Ceramics for the EV Battery Industry and Technical Ceramics for Global Industries

<u>www.ipsceramics.com</u> <u>enq@ipsceramics.com</u> | <u>usa@ipsceramics.com</u>

ABOUT US

OUR TEAM

- Collective 250+ years experience in design, development, manufacturing and sales
- Supplying furnace equipment and technical ceramic components to a wide range of industries
 - Based worldwide (UK/USA/China)

WHAT WE OFFER

- Dependable ceramic products for many industries
- Wide ranging support provided by our dedicated customer service and technical teams
 - Bespoke products created through our expert design teams and robust manufacturing base

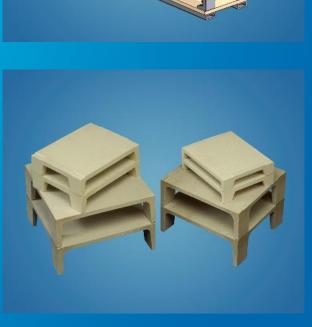
COMPANY TIMELINE

2000 Dyson Thermal Technologies formed through the merger of several renowned ceramic companies

2009 Management buy out of Dyson, ____ leading to the formation of IPS Ceramics 2010 Manufacturing partnership formed with Trend Industrial Ceramics 2016 IPS moved to larger office; IPS Ceramics USA established

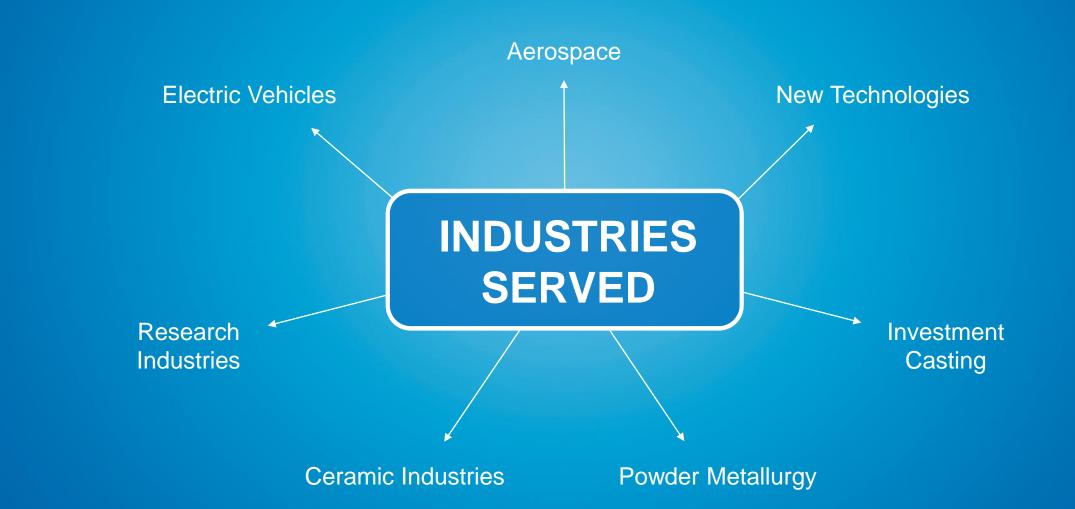
2019

10th Anniversary marked by record turnover; new custom-built factory opened 2021 to date Expanded saggar production in response to growing demand from EV industry


DPS CERAMICS

OUR EXPERTISE AND EXPERIENCE

- Worked extensively on projects with R&D institutions, including the creation of sintering support systems for solid state batteries
- Also worked with EV Battery companies to design and develop products for their manufacturing processes
- Our history of working with furnaces and related ceramic materials make us the perfect partner to optimise your kiln/furnace set-ups and get the most out of your materials
- We supply an extensive range of standard and bespoke products to the EV industry



INDUSTRIES SERVED GLOBALLY

ALUMINA MODULE SYSTEM

A customisable, compact and modular rack system used for supporting battery components during heat treatment.

Alumina tiles are also available which support materials / components.

Туре	Technical Alumina (92%)	Technical Alumina (95%) Technical Alumina (99%)		Technical Alumina (99.7%)
Max. Use Temperature	1400 °C / 2550 °F	1450 °C / 2650 °F	1600 °C / 2900 °F	1700 °C / 3100 °F
Density (g/cm³)	3.6	3.7	3.7 3.9	
Open Porosity (%)	< 0.5	< 0.5	< 0.5 < 0.5	
Bending Strength (MPa)	150	175	200	300
Modulus of Elasticity (GPa)	300	300	300	300
Thermal Conductivity (W/mK)	10	25	25	28
Coefficient of Thermal Expansion (x10 ⁻⁶ /K)	7	8	8	8

ALUMINA SUBSTRATE TILES

Alumina tiles and discs are used as substrates for new developments in battery and fuel cell technology. These tiles are often around 1mm thick and may be shaped or drilled using laser cutting.

Туре	Technical Alumina (92%)	Technical Alumina (95%) Technical Alumina (99%)		Technical Alumina (99.7%)
Max. Use Temperature	1400 °C / 2550 °F	1450 °C / 2650 °F 1600 °C / 2900 °F		1700 °C / 3100 °F
Density (g/cm³)	3.6	3.7	3.7 3.9	
Open Porosity (%)	< 0.5	< 0.5	< 0.5 < 0.5	
Bending Strength (MPa)	150	175	200	300
Modulus of Elasticity (GPa)	300	300	300 300	
Thermal Conductivity (W/mK)	10	25	25	28
Coefficient of Thermal Expansion (x10 ⁻⁶ /K)	7	8	8	8

SUPPORT SYSTEMS FOR SINTERING

Bespoke systems used to support products during the sintering process.

Modular designs, built out of individual components, give you high levels of flexibility.

Туре	Cordierite	Silicon Infiltrated / Reaction Bonded SiC	Nitride Bonded SiC	Recrystalised SiC
Properties	Good heat resistance Non-reactive	High strength Low creep	High strength and low creep Lightweight	High working temp. and low creep Thermal shock resistant
Max. Use Temperature	1350 °C / 2462 °F	1380 °C / 2500 °F	1450 °C / 2650 °F	1650 °C / 3000 °F
Density (g/cm³)	2 g/cm ³	3	2.8	2.7
Open Porosity (%)	26 %	< 0.5	13	15
Bending Strength (MPa)	15 Mpa	250	160	90
Modulus of Elasticity (GPa)	-	325	200	250
Thermal Conductivity (W/mK)	-	45	25	25

ROLLERS FOR KILNS & FURNACES

Used to support and transport products through the kiln or furnace during heat treatment.

Lengths, diameters and wall-thicknesses can be tailored to your application.

Туре	Mullite	Silicon Infiltrated / Reaction Bonded SiC	Nitride Bonded SiC	Recrystalised SiC
Properties	High melting point Excellent stability Non-reactive	High strength Low creep	High strength Low creep Lightweight	High working temp. Thermal shock resistant Low creep
Max. Use Temperature	1300 °C / 2372 °F	1380 °C / 2500 °F	1450 °C / 2650 °F	1650 °C / 3000 °F
Density (g/cm³)	2.16 g/cm ³	3	2.8	2.7
Open Porosity (%)	29.6 %	< 0.5	13	15
Bending Strength (MPa)	-	250	160	90
Modulus of Elasticity (GPa)		325	200	250
Thermal Conductivity (W/mK)	-	45	25	25
Coefficient of Thermal Expansion (x10 ⁻⁶ /K)		4.5	4.7	4.8

HEATING ELEMENTS

Used in kilns and furnaces for battery production.

High-density elements have a ceramic coating, allowing them to be used without a protection tube while providing a longer service life.

They resist oxidation or corrosion, exhibit minimal deformation, and are easy to install/maintain.

Туре	Standard Heating Element	High Density Heating Element
Properties	Requires Protection Tube	Protection Tube not needed
Max. Use Temperature	1600 °C / 2912 °F	1600 °C / 2912 °F
Density (g/cm³)	2.5	2.65
Open Porosity (%)	23	18
Bending Strength (MPa)	50	60
Specific Heat (kj/kg·°C)	1.0	1.0
Thermal Conductivity (W/mK)	14~19	14~19
Coefficient of Thermal Expansion (x10 ^{-6/} K)	4.5	4.5

BURNER NOZZLES AND RADIANT TUBES

Silicon Carbide Radiant Tubes and Burner Nozzles provide effective heat transfer in the furnace. Radiant Tubes also block contaminants and keep products pure. They are very strong and give a long service life.

Туре	Silicon Infiltrated / Reaction Bonded	Nitride Bonded SiC	Recrystalised SiC	
Properties	High strength Low creep	High strength Low creep Lightweight	High working temp. Thermal shock resistant Low creep	
Max. Use Temperature	1380 °C / 2500 °F	1450 °C / 2650 °F	1650 °C / 3000 °F	
Density (g/cm³)	3	2.8	2.7	
Open Porosity (%)	< 0.5	13	15	
Bending Strength (MPa)	250	160	90	
Modulus of Elasticity (GPa)	325	200	250	
Thermal Conductivity (W/mK)	45	25	25	
Coefficient of Thermal Expansion (x10 ⁻⁶ /K)	4.5	4.7	4.8	

HIGH PERFORMANCE SAGGARS

Туре	Mullite	Cordierite	Silicon Infiltrated / Reaction Bonded SiC	Nitride Bonded SiC	Recrystalised SiC
Properties	High melting point Excellent stability Non-reactive	Good heat resistance Non-reactive	High strength Low creep	High strength Low creep Lightweight	High working temp. Thermal shock resistant Low creep
Max. Use Temperature	1300 °C / 2372 °F	1350 °C / 2462 °F	1380 °C / 2500 °F	1450 °C / 2650 °F	1650 °C / 3000 °F
Density	2.16 g/cm ³	2 g/cm³	3 g/cm ³	2.8 g/cm ³	2.7 g/cm ³
Open Porosity	29.6 %	26 %	< 0.5 %	13 %	15 %
Bending Strength	-	15 Mpa	250 MPa	160 MPa	90 MPa
Modulus of Elasticity			325 GPa	200 GPa	250 GPa
Thermal Conductivity	-	-	45 W/mK	25 W/mK	25 W/mK
Coefficient of Thermal Expansion		2.8 x10-6/K	4.5 x10-6/K	4.7 x10-6/K	4.8 x10-6/K

CONTACT US

UK Head Office T: +44 (0)1782 711511 E: <u>enq@ipsceramics.com</u>

USA Office T: +1 (704) 659 6515 E: <u>usa@ipsceramics.com</u>

Asia Office E: <u>asia@ipsceramics.com</u>

Phil Green Sales Director E: <u>p.green@ipsceramics.com</u>

lan Wright Operations Director E: <u>i.wright@ipsceramics.com</u>

Tom Corcoran - Business Development Manager E: <u>t.corcoran@ipsceramics.com</u>